Алюмосиликат — свойства, получение, применение

АЛЮМОСИЛИКАТЫ

АЛЮМОСИЛИКАТЫ – природные и синтетические силикаты, содержащие в составе сложных анионов атомы алюминия и кремния.

Русский ученый Дмитрий Иванович Менделеев первым высказал идею, что алюмосиликаты представляют собой «неопределенные соединения», такие, например, как сплавы, но не простых тел, а близких по своим свойствам оксидов SiO2 и Al2O3. Сам термин «алюмосиликаты» был введен в минералогию Владимиром Ивановичем Вернадским, впервые правильно оценившим роль алюминия в построении минералов. В 1890-е он приступил к созданию своей теории строения алюмосиликатов. Как и Д.И.Менделеев, он говорил о близости химических функций оксидов кремния и алюминия. Отвергал мысль о том, что алюмосиликаты есть соли кремниевых кислот. По его мнению, алюмосиликаты являются производными сложных алюмосиликатных радикалов, «каолиновых ядер». Гипотеза о «каолиновом ядре» как о замкнутой группировке атомов кремния, алюминия и кислорода оказалась актуальной при расшифровке структуры полевых шпатов.

К началу 20 в. был накоплен обширный экспериментальный материал по составу и свойствам алюмосиликатов, однако их строение все еще оставалась загадкой. Решающее влияние на изучение структуры алюмосиликатов оказало открытие в 1912 немецкими физиками Максом фон Лауэ, Пaулем Книппингом (Knipping Paul) (1883–1935) и Вальтером Фридрихом (Friedrich Walter) (1883–1968) явления дифракции рентгеновских лучей на кристаллах и создание Уильямом Генри (Bragg William Henry) (1862–1942) и Уильямом Лоуренсом (Bragg William Lawrence) (1890–1971) Брэггами на этой основе принципиально нового метода исследования вещества – рентгеноструктурного анализа.

С 1925 по 1931 проводились интенсивные рентгеноструктурные исследования силикатов и алюмосиликатов и было установлено, что основным «строительным кирпичиком» этих соединений является атом кремния или алюминия, окруженный четырьмя атомами кислорода, – кремне(алюмо)кислородный тетраэдр SiO4(AlO4). Многообразие же алюмосиликатов объясняется разными способами соединения этих тетраэдров, которые обычно сочленяются вершинами с образованием связей Si-O-Si и Si-O-Al (рис. 1).

Алюмосиликаты распространены в природе, они составляют до 50% массы земной коры. К природным алюмосиликатам относятся, в первую очередь, полевые шпаты, имеющие каркасную структуру (например ортоклаз NaAlS3O8, альбит NaAlSi3O8, анортит CaAl2Si2O8).

У каркасных алюмосиликатов – непрерывный трехмерный каркас из тетраэдров, объединенных общими вершинами. Случаи связывания гранью или ребром неизвестны. Все атомы кислорода у тетраэдров кремния и алюминия являются общими. Так как в целом соединение должно быть электронейтральным, то полости между полиэдрами дополнительно заполняются катионами, которые нейтрализуют отрицательный заряд каркаса, возникающий при замене кремния на алюминий.

Каркасные алюмосиликаты являются основой многих поделочных камней. Такими алюмосиликатами являются и некоторые драгоценные камни, например берилл (Be3Al2)Si6O18 и его окрашенные разновидности: аквамарин (голубой, примесь оксида железа) и изумруд (зеленый, примесь оксида хрома). Полевые шпаты в составе различных горных пород, например, гранита, применяются в строительстве. Синтетические алюмосиликаты, полученные нагреванием оксидов алюминия и кремния с оксидами металлов, образуют основную кристаллическую фазу керамических материалов.

В 18 в. были открыты цеолиты – каркасные алюмосиликаты, состав которых можно описать общей формулой M I xM II y(Alx+2ySizO2x+4y+2z)·nH2O. Свое название они получили от греческих слов zeo – киплю и lithos – камень, т.к. образуют пузырчатое стекло при сильном и быстром нагревании. Известно более 40 минеральных видов природных цеолитов. Всего в мире известно около 1000 крупных месторождений цеолитов более чем в 40 странах, из них в России – около 20 (в Кузбассе, Якутии, Бурятии, Приморье, на Камчатке и о.Сахалин). С 1950-х в промышленных масштабах производятся искусственные цеолиты. В лабораториях синтезировано более 100 структурных видов, большинство которых не имеют природных аналогов.

Цеолиты – это нестехиометрические соединения, их составы изменяются в широких пределах, образуя ряды твердых растворов. Кристаллические структуры цеолитов состоят из тетраэдров [SiO4] 4– и [АlO4] 5– , соединенных вершинами в ажурные каркасы, в полостях и каналах которых находятся катионы металлов и молекулы Н2О. Они характеризуются рыхлой структурой с широкими каналами (рис. 2).

Это позволяет им обменивать находящиеся в полостях решетки катионы металлов и молекулы воды. Натуральные и синтетические цеолиты широко применяются в качестве катионообменников, например, при умягчении воды.

Если из цеолитов полностью удалить адсорбированную в их полостях воду, они выступают в роли молекулярных сит: в освободившихся полостях могут селективно адсорбироваться молекулы диоксида углерода, аммиака и других веществ. Поэтому цеолиты применяются как адсорбенты в хроматографии, а также при очистке, осушке и разделении газов.

Цеолиты являются кислотными катализаторами. Подвижные катионы, например, катионы натрия при промывке цеолита растворами кислот обмениваются на катионы водорода с образованием кислот Бренстеда. Если такой цеолит нагреть, вода может покинуть кислотные центры Бренстеда, и останутся атомы алюминия, координированные только с тремя атомами кислорода (рис. 3).

Продукт реагирует как кислота Льюиса. Преимущество цеолитов по сравнению с другими катализаторами в том, что появившиеся каталитические центры многочисленны, равномерно распределены по каркасу и одинаковы по активности.

Многие цеолиты используются как носители катализаторов.

Еще одна группа каркасных алюмосиликатов – это ультрамарины, встречающиеся в природе в виде сине-зеленого минерала лазурита (Na,Ca)8(Al,Si)12O24(S,SO4). Они отличаются от полевых шпатов и цеолитов открытой решеткой и интенсивной окраской. В отличие от других каркасных силикатов, ультрамарины безводны и содержат различные анионы: полисульфиды, сульфаты, хлориды. Считают, что синяя окраска ультрамаринов обусловлена наличием анион-радикалов S3 – , зеленая – присутствием S3 – и S2 – , а красная – S4 – .

Разложение каркасных алюмосиликатов на поверхности Земли и их превращение в слоистые силикаты (глины и другие отложения) сопровождается огромными по масштабам эффектами связывания энергии. В связи с этим алюминию приписывается роль основного аккумулятора солнечной энергии в земной коре.

Горные породы любого типа: кристаллические, обломочные, глинистые и аморфные на поверхности литосферы разрушаются, поглощая солнечную энергию. Такой процесс часто называют выветриванием, хотя ветер участия в нем не принимает.

Обычно процесс начинается с физического дробления. При разрушении минералов вещество горных пород поглощает солнечную энергию, идущую на увеличение площади свободной поверхности.

Биохимическое разложение выражается в разрушении структуры минералов с образованием новых минералов (большей частью, глинистых), устойчивых в поверхностных условиях литосферы. В нем в той или иной степени принимают участие организмы как непосредственно, так и опосредствовано – через продукты своей жизнедеятельности (почвообразование (см.также ПОЧВЫ), свободный кислород, растворенные в водах органические кислоты и др.).

Например, кристаллический алюмосиликат альбит NaAlSi3O8 разрушается до аморфного опала – гидрооксида кремния SiO2·nH2O и глинистого минерала – каолинита состава Al2O3·2SiO2·2H2O. Переход кристаллических веществ в аморфные и тонкодисперсные сопровождается повышением энергонасыщенности вещества, т.к. расстояние между атомами в нем увеличивается. Происходит и геохимическая аккумуляция солнечной энергии, так как в полевых шпатах координационное число алюминия 4, а в образовавшихся за счет их глинистых минералах оно повышается до 6.

В слоистых алюмосиликатах кремне- и алюмокислородные тетраэдры соединены в одной плоскости в непрерывный слой. Слои тетраэдров обособлены друг от друга. Связь между слоями обеспечивается ван-дер-ваальсовыми силами или силами электростатического притяжения с помощью катионов, нейтрализующих отрицательные заряды слоев. Из-за наличия слоев тетраэдров и слабых связей между ними слоистые алюмосиликаты образуют чешуйчатые, листовые или таблитчатые агрегаты.

К слоистым алюмосиликатам относятся некоторые глинистые минералы, например галлуазит (H2O)4[Al2(Si2O5)(OH)4]. Все такие минералы содержат между слоями решетки молекулы воды. В некоторых из них, например, вермикулите (Ca,Mg)0,7(Mg,Fe III ,Al)6(Al,Si)8O20·8H2O, вода быстро удаляется при нагревании, и минерал расслаивается. Обезвоженный вермикулит применяют в качестве легкого наполнителя при изготовлении бумаги, пластиков и красок, а также как упаковочный материал.

В увлажненном состоянии глины (состоящие из частиц размером менее 0,001 мм) пластичны. При высыхании они сохраняют приданную им форму, а при обжиге твердеют. Их используют для очистки различных продуктов (нефти, масел, вод и пр.), обезжиривания тканей, при производстве железорудных окатышей, керамзита, в литейном деле, медицине, изготовлении мыла, простого и огнеупорного кирпича, фаянса и других изделий.

Минералы группы слюд образуют слоистую решетку с ионами «гостей» между силикатными листами «хозяина» (рис. 4).

Слюды легко расщепляются на очень тонкие, гибкие и в то же время упругие пластинки. Они обладают высокими диэлектрическими свойствами и огнестойкостью. В виде тонких пластин они прозрачны, поэтому было время, когда их использовали в качестве оконного стекла. Сейчас, благодаря высоким диэлектрическим свойствам, слюды применяются в электропромышленности, радиотехнике и приборостроении.

Способ получения алюмосиликатов натрия или калия из кремнийсодержащего растительного сырья

Владельцы патента RU 2557607:

Изобретение может быть использовано для получения носителей катализаторов, ионообменных материалов, сорбентов, используемых при очистке, сушке и разделении газов, при очистке воды от бактерий и пестицидов, для приготовления пигментов, для получения пищевых добавок. Способ включает взаимодействие раствора силиката натрия или калия с раствором соли алюминия, отделение образовавшегося осадка, промывание его водой и термообработку. Раствор силиката натрия или калия получают путем обработки рисовой шелухи или соломы 4-10% раствором гидроксида натрия или калия при температуре 70-90°C в течение 40-60 мин с последующим отделением нерастворившегося остатка растительного сырья. В качестве раствора соли алюминия используют насыщенный водный раствор сернокислого алюминия Al2(SO4)3·18H2O в количестве, обеспечивающем нейтральное значение pH реакционной смеси. Образовавшийся осадок целевого продукта после отстаивания промывают водой до полного удаления сульфат-ионов и подвергают термической обработке при температуре 150-600°C. При использовании гидроксида натрия осадок отстаивают в течение не менее 5 часов, а при использовании гидроксида калия осадок отстаивают в течение не менее 1 часа. Технический результат – упрощение способа и повышение его безопасности для здоровья человека и окружающей среды при одновременном расширении сырьевой базы. 2 з.п. ф-лы, 6 ил., 3 пр.

Изобретение относится к технологии получения из кремнийсодержащего растительного сырья, а именно, из рисовой шелухи и соломы, аморфных алюмосиликатов щелочных металлов, и может найти применение для получения носителей катализаторов, ионообменных материалов, сорбентов различного назначения, в частности, используемых при очистке, сушке и разделении газов, при очистке воды от бактерий и пестицидов, для приготовления ультрамаринового пигмента, для получения пищевых добавок, препятствующих слеживанию и комкованию, а также способствующих разделению и осветлению сыпучего пищевого сырья и продуктов (в частности, пищевых добавок Е554, Е55, Е556, Е559).

Преимущественным способом получения синтетических алюмосиликатов является гидротермальный синтез при нагревании оксидов кремния и алюминия с оксидами металлов. Известны также способы получения щелочных алюмосиликатов из минерального сырья либо отходов производства. Способы получения щелочных алюмосиликатов с использованием растительного сырья в патентной и научно-технической литературе не описаны.

Известен способ получения минерального алюмосиликата натрия из отходов производства фторида алюминия (пат. РФ №2044689, опубл. 1995.09.27), согласно которому готовят суспензию кремнегеля, отхода производства фторида алюминия, с раствором гидрата окиси натрия при мольном соотношении исходных компонентов (в пересчете на окислы), равном SiO2:Na2O:Al2O3=1:(0,8-1,5):(0,1-0,18). Полученную смесь нагревают до температуры кипения и выдерживают при этой температуре и перемешивании в течение 1,0 2,5 ч. Существенным недостатком известного способа является неизбежное загрязнение образующегося продукта ионами фтора, ограничивающее его применение.

Известен также способ получения алюмосиликатов (пат. РФ №2106303, опубл. 1998.03.10), содержащих в своем составе щелочные и щелочноземельные металлы, согласно которому перлит и диатомит обрабатывают в щелочном растворе при концентрации 50-100 г/л Na2O 0,95-105°C и Ж:Т=(3-5):1 в течение 1,5-3 ч и нагревают при 75-120°C. К полученной суспензии после второй щелочной обработки добавляют жидкую фазу от первой обработки и раствор алюмината натрия. Недостатком известного способа является получение алюмосиликатов, содержащих в своем составе ионы как щелочных, так и щелочноземельных металлов, а также ионы других элементов, входящие в состав перлита и диатомита, что ограничивает область применения получаемого продукта.

Читайте также:  Магния цитрат - свойства, применение, влияние

Известен способ получения водорастворимого силиката натрия (жидкого стекла) из рисовой шелухи (п. РФ №2310604, опубл. 2007.11.20), включающий обработку шелухи раствором гидроксида натрия, при этом смесь сырья с раствором гидроксида натрия сначала высушивают, затем проводят сплавление твердых компонентов при 750-1000°C в инертной либо восстановительной атмосфере с получением твердого сплава и выделением газообразных продуктов. Для приготовления жидкого стекла полученный сплав растворяют в воде и отфильтровывают углеродный остаток. Получение силиката натрия известным способом и, соответственно, получение алюмосиликата натрия с его использованием ведут к потере органической части сырья, полностью выгорающей при температуре сплавления, и значительному увеличению энергозатрат.

Известен способ получения пигмента для копировальной бумаги – алюмосиликата с определенным мольным соотношением SiO2:Na2O, заданным значением удельной поверхности и объема пор (п. US №5766564, опубл. 1998.06.16), включающий взаимодействие раствора силиката натрия с раствором сульфата алюминия, при этом реакцию проводят в два этапа. Сначала готовят водный раствор силиката натрия с pH 10-11, добавляют подкисленный серной кислотой раствор сульфата алюминия до значений pH реакционной смеси преимущественно 5,5-6,5, затем проводят осаждение алюмосиликата, дополнительно дозируя в полученную смесь одновременно раствор силиката натрия со скоростью 0,1-10% в минуту и раствор сульфата алюминия со скоростью 0,5-5,0% в минуту от первоначально использованного веса таким образом, чтобы значение pH оставалось на достигнутом уровне. Термообработку осажденного продукта проводят в два этапа: сначала при 300-700°C для удаления сульфата или хлорида аммония, используемых при его промывании, затем при 120-350°C после размалывания промытого и высушенного продукта. Известный способ осуществляется в несколько этапов, требует тщательной дозировки компонентов во времени, что связано с дополнительными трудозатратами, а также обязательного применения коммерческих реактивов заданного качества.

Наиболее близким к заявляемому является способ получения алюмосиликата натрия (а.с. СССР №1308558, опубл. 1987.05.07), включающий взаимодействие водного раствора силиката натрия и раствора соли алюминия в трибутилфосфате или его смеси с не смешивающимися с водой органическими растворителями с последующим фильтрованием осадка, его промывкой и сушкой.

Недостатком способа является необходимость использования ряда органических растворителей (трибутилфосфат, толуол, четыреххлористый углерод, ацетон), что требует дополнительных мер предосторожности и усложняет технологическую схему, поскольку является небезопасным с экологической точки зрения.

Задачей изобретения является создание простого и экологически безопасного способа получения алюмосиликатов натрия или калия с использованием кремнийсодержащего растительного сырья.

Технический результат изобретения заключается в упрощении способа и повышении его безопасности для здоровья человека и окружающей среды при одновременном расширении его сырьевой базы.

Указанный технический результат достигается способом получения алюмосиликатов калия или натрия, включающим взаимодействие раствора силиката натрия или калия с раствором соли алюминия, отделение образовавшегося осадка целевого продукта, его промывание водой и термообработку, в котором, в отличие от известного, используют раствор силиката натрия или калия, полученный путем обработки шелухи и/или соломы риса 4-10% раствором гидроксида натрия NaOH или калия KOH при температуре 70-90°C в течение 40-60 мин с последующим отделением нерастворившегося остатка растительного сырья, при этом в качестве раствора соли алюминия используют насыщенный водный раствор сернокислого алюминия Al2(SO4)3·18H2O в количестве, обеспечивающем нейтральное значение pH реакционной смеси (pH 7), осадок целевого продукта после отстаивания промывают до полного удаления сульфат-ионов, а термообработку выполняют при температуре 150-600°C.

При обработке растительного сырья раствором гидроксида натрия NaOH осадок целевого продукта отстаивают в течение не менее 5 часов.

При использовании раствора гидроксида калия KOH осадок целевого продукта отстаивают в течение не менее 1 часа.

Способ осуществляют следующим образом.

Навеску измельченного в случае необходимости (солома) и промытого кремнийсодержащего растительного сырья заливают горячим (70-90°C) 4-10% раствором гидроксида натрия NaOH или калия KOH и выдерживают при этой температуре в течение 40-60 мин, что обеспечивает эффективную обработку при оптимальных затратах времени и расходе электроэнергии. Отделяют от раствора остаток нерастворившейся рисовой шелухи (соломы), который по сути представляет собой волокнистый полуфабрикат, являющийся сырьем для целлюлозно-бумажных предприятий при изготовлении волокнистых целлюлозных материалов (в частности, по технологиям, описанным в патентах РФ №2312945 и №2312946, опубл. 2007.12.20). В полученный после отделения нерастворившегося остатка рисовой шелухи (соломы) щелочной гидролизат (черный щелок), содержащий силикат натрия (калия), при комнатной температуре добавляют при перемешивании предварительно приготовленный насыщенный раствор сернокислого алюминия до достижения нейтрального значения pH реакционной смеси (pH 7). Выпавший в результате взаимодействия осадок выдерживают до его полного отстаивания: не менее 5 часов при использовании раствора NaOH и не менее 1 часа при использовании раствора KOH. Затем отделяют от жидкости известным способом (например, декантацией, центрифугированием или с помощью фильтрации) и промывают водой до полного удаления сульфат-ионов, SO4 2- , при этом контроль промывных вод ведут по реакции с BaCl2. Полученный осадок подвергают термообработке при температуре не выше 600°C (от 150 до 600°C – в зависимости от требований к качеству целевого продукта).

Выход целевого продукта составляет 9-26% от массы исходного сырья в зависимости от вида сырья (шелуха, солома) и сорта растения.

Полученный продукт представляет собой мелкодисперсный порошок белого или светло-бежевого цвета, в зависимости от условий промывки и термообработки, с размером частиц от 1 до 70 нм.

Состав полученного продукта соответствует алюмосиликату натрия или калия, что подтверждается элементным анализом, а также методом ИК-спектроскопии.

На фиг. 1 представлены ИК-спектры поглощения: a – спектр аморфного SiO2, полученного из рисовой шелухи термическим способом (для сравнения); b – спектр аморфного алюмосиликата натрия, полученного из щелочного гидролизата рисовой шелухи.

В спектре SiO2 имеются полосы поглощения в области 473, 804 и 1107 см -1 , отвечающие валентным и деформационным колебаниям силоксановых связей Si-O-Si, характерные для аморфного кремнезема (Инфракрасные спектры неорганических стекол и кристаллов / Под ред. Власова А.Г., Флоринской В.А. Л.: Химия, 1972, 304 с).

А в ИК-спектре полученного алюмосиликата наблюдается иное, характерное для силикатных образований с другой структурой, число и положение полос поглощения в области колебаний связей Si-O-Si, а именно: 592, 710, 866 и 1016 см -1 (там же). Кроме того, в данном образце алюмосиликата имеются полосы поглощения при 3445 см -1 (валентные) и 1649 см -1 (деформационные), указывающие на наличие связей O-H и молекул сорбированной воды.

Полученный продукт находится в рентгеноаморфном состоянии, что подтверждается рентгенофазовым анализом. Для полученного предлагаемым способом образца на рентгенограммах наблюдается один, характерный для аморфного строения вещества, размытый пик в области 2θ=24°, в то время как для аморфного диоксида кремния максимум размытого пика находится при 2θ=30°. На фиг. 2a-b приведены рентгенограммы аморфных образцов: a – аморфного SiO2, полученного из рисовой шелухи термическим способом (для сравнения), b – аморфного алюмосиликата натрия, полученного из щелочного гидролизата рисовой шелухи.

Содержание кремния, алюминия, натрия и калия в образцах изменяется в зависимости от вида исходного сырья (шелуха, солома) и сорта растения в следующих пределах (мас. %): Si 14-20; Al 13-27; Na 8-11; K 4-16.

Молярное отношение Me (Na, K): Si: Al составляет для алюмосиликатов из шелухи риса 1:(1.5-2.1):(2.1-2.9), а из соломы риса 1:(1.4-1.6):1.

Потери после прокаливания полученных предлагаемым способом алюмосиликатов натрия и калия при 1000°C составляют примерно 12-18%, что связано с удалением сорбированных продуктов воды и органических веществ, извлекаемых в раствор из сырья при обработке щелочью. После прокаливания алюмосиликат с катионом калия сохраняет аморфное состояние, а с катионом натрия – частично кристаллизуется с появлением фазы, отвечающей составу NaAlSiO4 (идентификация этой фазы проведена методом рентгенофазового анализа).

Морфология частиц полученного порошка силикатов изучена на сканирующем электронном микроскопе (СЭМ) высокого разрешения Hitachi S 5500 (фиг. 3 и 4). На фиг. 3a-b представлены снятые при разном увеличении снимки алюмосиликата натрия, полученного из шелухи риса. На фиг. 4a-b представлены снимки алюмосиликата калия, полученного из соломы риса (a – общий вид порошка, b – поверхность одной частицы, снятая при большем увеличении, на которой хорошо видны поры).

Частицы представляют собой агломераты пластинчатой (осколочной) (фиг. 3a-b) или округлой (фиг. 4a) формы в зависимости от вида сырья (солома или шелуха), в общем случае усеянные порами (фиг. 4b).

Удельную поверхность образцов (Sуд) и распределение пор по размерам определяли по адсорбции азота на анализаторе ASAP 2020 (Micromeritics Instrument Corporation) методом БЭТ (Брунауэра, Эммета, Теллера). Величина Sуд полученных алюмосиликатов составляет 115-134 м 2 /г, а средний диаметр пор частиц 15-19 нм, что характерно для мезопористых образцов.

Насыпная плотность алюмосиликатов, определенная по отношению массы вещества к занимаемому объему, находится в интервале 552-624 г/л.

Примеры конкретного осуществления способа

Навеску рисовой шелухи 60 г обрабатывают 4% раствором NaOH при соотношении Т:Ж=1:13 при температуре 90°C в течение 60 мин., затем охлаждают до комнатной температуры и отделяют нерастворившийся остаток сырья. В полученный щелочной раствор (гидролизат) добавляют при комнатной температуре при перемешивании насыщенный раствор сульфата алюминия Al2(SO4)3·18H2O (на 100 г воды 34.2 г сульфата алюминия при 20°C; pH 2) до нейтрального значения pH. Образовавшийся в результате взаимодействия осадок отстаивают 5,5 часов, отделяют от раствора декантацией, промывают водой до полного удаления сульфат-ионов, которое контролируют по реакции промывной воды с хлоридом бария BaCl2, и сушат при температуре 600°C.

Получено 15,6 г порошка белого цвета, что соответствует выходу продукта 26%. Молярное отношение элементов в продукте составляет Na:Si:Al=1:1.5: 2.1. Удельная поверхность 123 м 2 /г. Насыпная плотность 580 г/л.

Способ осуществляют по примеру 1, при этом обработку рисовой шелухи проводят 10% раствором NaOH при соотношении Т:Ж=1:13 и температуре 70°C в течение 40 мин, а сушку проводят при 150°C. Получено 14,4 г вещества светло-бежевого цвета, выход 24%. Молярное отношение элементов в продукте составляет Na:Si:Al=1:2.1:2.5. Удельная поверхность 125 м 2 /г. Насыпная плотность 589 г/л.

Навеску рисовой соломы 60 г обрабатывают по примеру 1 (используют 6% раствор KOH при соотношении Т:Ж=1:13, образовавшийся осадок отстаивают 1,5 часа). Получено 6 г порошка светлого цвета, выход продукта 10%. Молярное отношение элементов в продукте составляет K:Si:Al=1:1.4:1 Удельная поверхность 120 м 2 /г. Насыпная плотность 579 г/л.

1. Способ получения алюмосиликатов натрия или калия из кремнийсодержащего растительного сырья, включающий взаимодействие раствора силиката натрия или калия с раствором соли алюминия, отделение образовавшегося осадка целевого продукта, его промывание водой и термообработку, отличающийся тем, что используют раствор силиката натрия или калия, полученный путем обработки рисовой шелухи или соломы 4-10% раствором гидроксида натрия NaOH или калия KOH при температуре 70-90°C в течение 40-60 мин с последующим отделением нерастворившегося остатка растительного сырья, при этом в качестве раствора соли алюминия используют насыщенный водный раствор сернокислого алюминия Al2(SO4)3·18H2O в количестве, обеспечивающем нейтральное значение pH реакционной смеси, образовавшийся осадок целевого продукта после отстаивания промывают водой до полного удаления сульфат-ионов и подвергают термической обработке при температуре 150-600°C.

Читайте также:  Натрия лаурилсульфат — применение и вред

2. Способ по п. 1, отличающийся тем, что при использовании гидроксида натрия NaOH осадок целевого продукта отстаивают в течение не менее 5 часов.

3. Способ по п. 1, отличающийся тем, что при использовании гидроксида калия KOH осадок целевого продукта отстаивают в течение не менее 1 часа.

Алюмосиликаты (Е559)

Алюмосиликаты – это широко распространенные природные материалы. Данное вещество нашло свое применение в пищевой промышленности в качестве эмульгатора. Добавление пищевой добавки в сыпучие материалы помогает избегать образования комков и слеживания.

Индекс пищевой добавки алюмосиликат – Е559. Другое название – каолин. На данный момент есть строгие ограничения по использованию данного эмульгатора в пищевых продуктах. При превышении установленной недельной дозы потребления отмечается негативное воздействие вещества на организм человека.

Несмотря на существующие ограничения, сегодня добавка Е559 относится к разряду безопасных.

Алюмосиликаты применяются не только в пищевой промышленности, но и в косметологии. Маски и ванны с добавлением белой глины целебно воздействуют на кожу.

Способ получения пищевого концентрата

Сырьем для получения пищевой добавки служит алюминиевая соль кремниевой кислоты. Образующее вещество добывают карьерным способом. Поскольку изначально в нем очень много примесей, далее следует сложная многоуровневая очистка в центрифугах. Полученный чистый алюмосиликат сначала обезвоживают, а затем сушат в промышленных печах.

По окончании сушки обязательно проверяются качественные характеристики пищевой добавки. Е559 проверяют на наличие примесей, дисперсность и оценивают чистоту цвета.

В некоторых странах есть более современный способ получения пищевой добавки: сырье от шахты до производства движется по специальным трубопроводам длиной 20-45 км. За время транспортировки удается избавиться от большинства ненужных примесей, что позволяет получать более чистую пищевую добавку при меньшем количестве этапов гравитационной очистки.

Синтетический алюмосиликат получают путем смешивания и нагревания оксидов соответствующих металлов. Полученное химическим путем вещество не отличается по своим характеристикам от каолина, очищенного из натурального сырья.

Свойства алюмосиликата

Внешне эмульгатор выглядит как белый порошок с мелкими частицами одинакового размера. На ощупь порошок жирный, слоистый.

Цвет – чисто белый с серым или розовым оттенком. Конечный цвет зависит от характеристик образующего вещества. Аромат полностью отсутствует, вкус практически не выражен, землистый.

Порошок не вступает в химические реакции с большинством реагентов и не растворяется в воде, кислотах, спирте и эфире. Для растворения алюмосиликата в химических лабораториях применяется фтористоводородная кислота.

Эмульгатор не меняет своих характеристик при воздействии температур. При контакте с влагой образуется плотная пластичная масса.

На пищевые производства эмульгатор Е559 поступает в полипропиленовых бочках, бумажных или полипропиленовых мешках, многослойных картонных барабанах. В розничную торговлю пищевая добавка поступает в пластиковых банках или плотных фольгированных мешочках с многоразовой герметичной застежкой.

Пищевая ценность

При условии дозированного потребления, алюмосиликат положительно воздействует на организм человека. В составе пищевой добавки имеются ценные микро- и макроэлементы, необходимые для нормального функционирования внутренних органов и систем.

Еще одно полезное свойство Е559 – способность очищать организм от шлаков и токсинов. Каолин может употребляться с целью очищения организма как в чистом виде, так и в составе лекарственных препаратов.

Маски и ванны на основе белой глины полезны при различных заболеваниях кожи и дистрофических поражениях суставов. В корма для животных каолин добавляют с целью насыщения готового продукта важными микро- и макроэлементами.

Применение в пищевой промышленности

В пищевой промышленности эмульгатор Е559 добавляется в сухие сыпучие продукты, смеси и порошки. Пищевая добавка используется в качестве антислеживателя или антикомкователя. Ее применение позволяет дольше хранить сыпучие продукты без потери их качественных характеристик.

Согласно действующим нормам и технологическим инструкциям, каолин может добавляться в следующие продукты:

  • сахар-песок и сахарную пудру;
  • крахмал;
  • сухое молоко;
  • соль кухонную;
  • некоторые виды кондитерских изделий;
  • полуфабрикаты.

Алюмосиликат используется при производстве сыров и сырных полуфабрикатов, продаваемых в нарезанном виде. Добавление эмульгатора позволяет сохранять форму готового к употреблению продукта и препятствует его быстрому высыханию.

Каолин – вещество, с выраженным адсорбирующим эффектом. Поэтому при производстве патоки, используемой в качестве сырья для кондитерских изделий, тоже допускается применение Е559. Данный индекс можно увидеть на этикетке консервов, БАДов, сливочного масла, фруктовых соков.

Польза и вред пищевой добавки

На данный момент полностью не изучено влияние Е559 на человеческий организм. В виду отсутствия ограничений по использованию пищевого концентрата, есть рекомендации, согласно которым его вхождение в готовый продукт должно быть в пределах 30 г на 1 кг сыпучего продукта. Для жидких продуктов рекомендуемая доза равна 1 г алюмосиликата на 1 л сока/вина.

При нормированном потреблении каолин действует по типу медицинского адсорбента – очищает кишечник от токсинов и шлаков, способствует нормализации пищеварения.

Еще одно полезное свойство пищевого концентрата – он связывает и выводит из организма радионуклиды, действуя как мощный антиоксидант.

Аллергикам стоит четко контролировать количество употребляемого в пищу алюмосиликата, поскольку вещество может провоцировать развитие аллергических реакций. Люди, у которых есть серьезные заболевания пищеварительной системы, тоже должны избегать злоупотребления Е599.

Есть данные о том, что допустимая недельная доза каолина составляет 2 мг на 1 кг массы тела. Если не превышать рекомендуемую дозу, то эмульгатор абсолютно безопасен для здоровья. Злоупотребление алюмосиликатом может вызвать расстройства пищеварения или кожные аллергические реакции.

Алюмосиликат — свойства, получение, применение

Ключевые слова конспекта: алюминий, свойства алюминия, получение и применение алюминия, алюмосиликаты, глина, оксид алюминия, боксит, дюралюмин, дюраль.

Алюминий Al – элемент № 13, 3–го периода, IIIA группы, Ar (Al) = 27. Электронная конфигурация невозбуждённого атома алюминия 1s 2 2s 2 2p 6 3s 2 3p 1 :

Алюминий является р-элементом. В своих соединениях он всегда имеет степень окисления +3. Оксид и гидроксид алюминия (Al2O3 и Al(ОН)3 соответственно) амфотерны. Существует водородное соединение алюминия – гидрид алюминия AlH3 (алан) – белый порошок.

По распространённости в земной коре алюминий занимает 4-е место (после О, Si, Н). Основная масса алюминия сосредоточена в алюмосиликатах. Продуктом разрушения алюмосиликатов является глина, она состоит из каолинита – Al2O3 • 2SiO2 • 2H2O. Обычно глина содержит примесь соединений железа, придающую ей бурый цвет. Из других минералов наибольшее распространение имеет боксит – Al2O3nH2O.

АЛЮМИНИЙ – ПРОСТОЕ ВЕЩЕСТВО

Алюминий – серебристо-белый металл (на воздухе покрывается плотной тонкой плёнкой оксида), плотность 2,7 г/см 3 (лёгкий металл), легкоплавкий (t°пл. = 660 °С).

На воздухе алюминий покрывается прочной тончайшей (10 –8 м) защитной плёнкой оксида, которая препятствует проникновению кислорода к металлу и практически полностью прекращает дальнейшее окисление.

Алюминиевый порошок сгорает при нагревании в кислороде:

При окислении алюминия выделяется большое количество теплоты. Нагретый порошок алюминия при попадании в атмосферу кислорода реагирует с выделением огромного количества теплоты, достигается температура до 3000–3500 °С. Тепловой эффект реакции алюминия с кислородом чрезвычайно высок, образование этого соединения энергетически очень выгодно.

При нагревании алюминий легко реагирует с серой:

Алюминиевый порошок легко реагирует с галогенами и сгорает в атмосфере хлора. Кусочек алюминия, с которого снята оксидная плёнка, бурно реагирует с бромом. Эти реакции идут без нагревания:

Алюминиевый порошок реагирует с кристаллическим йодом, в присутствии катализатора (или при нагревании) выделяются капельки воды.

Алюминий без оксидной плёнки реагирует с азотом при сильном нагревании (800–1200 °С), образуя нитрид алюминия:

При сильном нагревании (1500–1700 °С) алюминий реагирует с углеродом (графитом) с образованием карбида алюминия:

Алюминий непосредственно не реагирует с водородом. Гидрид алюминия получают косвенным путём.

Алюминий энергично взаимодействует с водой, если механическим путём или амальгамированием снять предохраняющее действие оксидной плёнки:

Вследствие высокого теплового эффекта соединения алюминия с кислородом алюминий активно восстанавливает многие металлы из оксидов (алюмотермия):

При этом реакция обычно сопровождается выделением большого количества тепла и повышением температуры до 1200–3000 °С. Алюмотермия применяется в производстве марганца, хрома, ванадия, вольфрама, ферросплавов.

Как метод получения металлов, алюмотермия была предложена Н. Бекетовым в 1859 г. Её используют для получения многих металлов (Мп, Cr, V, W, Sr, Ва и др.).

Алюминий реагирует с галогеноводородными кислотами, разбавленной серной и азотной кислотами с образованием солей, в которых алюминий находится в катионной форме, и выделением водорода. Например:

Алюминий не реагирует с азотной и серной концентрированными кислотами в обычных условиях. На поверхности алюминия образуется защитная оксидная плёнка, алюминий пассивируется. Алюминий реагирует с разбавленной азотной кислотой (2–3 моль/л) с образованием нитрата алюминия, нитрата аммония и воды:

Алюминий активно взаимодействует с растворами щелочей. Щёлочи растворяют оксидную плёнку на поверхности алюминия. Образуются соли, в которых алюминий находится в анионной форме, и выделяется водород:

Алюминий реагирует с растворами солей, восстанавливая катионы менее активных металлов (металлов, расположенных в ряду напряжений правее алюминия):

ПОЛУЧЕНИЕ И ПРИМЕНЕНИЕ АЛЮМИНИЯ

Основным сырьём для производства алюминия служат бокситы, содержащие 32–60% глинозёма Al2O3. Алюминий получают электролизом расплава глинозёма Al2O3 в расплавленном криолите Na3AlF6. В электролизёре находится 6–8% глинозёма и 92– 94% криолита. Криолит в ходе электролиза не расходуется. Его получают искусственным путём – взаимодействием Al(ОН)3, HF и Na2CO3.

На катоде происходит восстановление алюминия: Al 3+ + 3е – → Al 0 ,

на аноде – окисление его оксида: 2Al2О3 – 12е – → 4Al 3+ + 3O2↑,

а затем вторичная реакция на аноде: С + O2 СO2 или 2С + O2 → 2СО

По широте применения сплавы алюминия занимают 2–е место после чугуна и стали. Алюминий – основа лёгких сплавов (например, дюралюмина, силумина), его применяют для производства различных ёмкостей и аппаратов, фольги и проволоки, в качестве раскислителя стали и восстановителя в алюмотермии. Высокая электропроводность и коррозионная стойкость позволяют применять алюминий для изготовления электрических проводов, кабелей, конденсаторов. Лёгкость, коррозионная стойкость алюминия и относительная нетоксичность его соединений позволяют применять алюминий для изготовления бытовой посуды, а алюминиевую фольгу – в пищевой и фармацевтической промышленности для упаковки продуктов и препаратов.

Из сплавов алюминия наиболее распространены дюралюмин, сокращённо – дюраль. Большую твёрдость дюралю по сравнению с чистым алюминием придают добавки меди, марганца и т. д. Дюралюмин – основной конструкционный материал в самолётостроении. Сплавы алюминия широко используются в автомобилестроении, судостроении, авиационной технике.

Конспект урока по химии «Алюминий: характеристика и свойства». Выберите дальнейшее действие:

Химические свойства. Природные силикаты и алюмосиликаты, цеолиты

Природные силикаты и алюмосиликаты, цеолиты

Химические свойства

Способы получения

Кремниевые кислоты

Диоксид кремния — кислот­ный оксид. Ему соответствуют слабые малорастворимые в воде кремниевые кислоты. Их можно представить общей формулой nSiO2•mН2О. В свободном состоянии выделены ортокремниевая Н4SiO4, метакремниевая (или кремниевая) H2SiO3 кислоты. Метакремниевая кислота довольно легко образует пере­сыщенные растворы, в которых она постепенна полимеризуется и переходит в коллоидное состояние. С помощью стабилизаторов можно получить стойкие золи кремниевой кислоты высокой концентрации. Эти растворы применяются в некоторых производ­ствах, например, при изготовлении бумаги, для обработки воды.

В отсутствие стабилизаторов золь кремниевой кислоты перехо­дит в гель. При его высушивании образуются пористые продукты (силикагель), применяемые в качестве осушителей и адсор­бентов.

Читайте также:  Оксид кальция — характеристика, применение, получение

1) Осаждение кислотами из растворов силикатов щелочных металлов:

2) Гидролиз хлорсиланов:

Кремниевые кислоты – очень слабые кислоты (слабее угольной).

При нагревании они дегидратируются с образованием в качестве конечного продукта кремнезема:

Силикаты чрезвычайно распространены в природе. К природным силикатам принадлежат полевые шпаты, слюды, глины, асбест, тальк и многие другие минералы. Силикаты входят в состав целого ряда горных пород: гранита, гнейса, базальта, различных сланцев и т. д. Многие драгоценные камни, например, изумруд, топаз, аквамарин пред­ставляют собой хорошо образованные кристаллы природных силикатов.

1) Поскольку кремниевые кислоты чрезвычайно слабые, их соли в водных растворах сильно гидролизованы:

2) По этой же причине при пропускании углекислого газа через растворы силикатов происходит вытеснение из них кремниевой кислоты:

Состав природных силикатов выражается в большинстве случаев довольно сложными формулами. Ввиду сложности этих формул, принято писать их несколько иначе, чем обычные формулы солей.

Дело в том, что всякую соль кислородной кислоты можно рас­сматривать как соединение кислотного оксида с основным (или даже с двумя основными оксидами, если это двойная соль). На­пример, СаСО3 можно рассматривать как соединение СаО и СО2, Аl2(SО4)3 — как соединение Аl2О3 и 3 SО3 и т. д. На этом основа­нии при изображении состава силикатов обычно пишут отдельно формулы диоксида кремния и всех оксидов, образующих силикат, соединяя их точками.

Приведем формулы некоторых природных силикатов:

Как уже указывалось ранее, силикаты, содержащие алюминий, называются алюмосиликатами. Самыми важными из них являются полевые шпаты.

В состав полевых шпатов, кроме оксидов кремния и алюминия входят еще оксиды калия, натрия или кальция. Обычный полевой шпат, или ортоклаз, содержит оксид калия; состав его выражается формулой К2О • А12О3 • 6 SiO2 Преобладающий цвет полевых шпа­тов — белый или красный. Полевые шпаты встречаются в природе как в виде сплошных залежей, так и в составе сложных горных пород.

К алюмосиликатам относятся также слюды, отличающиеся способностью раскалываться на тонкие, гибкие листочки. Слюды имеют сложный состав и наряду с кремнием и алюминием содержат водород, калий или натрий; в состав некоторых слюд входят также кальций, магний и железо.

Некоторые алюмосиликаты обладают рыхлой структурой и спо­собны к ионному обмену содержащейся в них водой на другие жидкости (спирт, аммиак и т. д.). Такие силикаты — природные и особенно искусственные — применяются для водоумягчения и называются цеолитами.

Дата добавления: 2014-10-15 ; Просмотров: 1802 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Структура, слоистых алюмосиликатов и их физические и химические свойства

Природные слоистые алюмосиликаты, обычно используемые в нанокомпозитах, принадлежат к структурному семейству, известному, как

2:1-филосиликаты. Атомная структура обычно встречающихся слоистых

алюмосиликатов представлена на рисунке 1. Главные элементы структуры

глинистых минералов – кремнекислородный ион Si04 и алюмокислородный ион А1(0,ОН) [6, 25, 26]. Ион Si04 представляет собой правильный тетраэдр, в вершинах которого находятся атомы кислорода, а в центре – атом кремния. Ион А1(0,0Н) является правильным октаэдром, в центре которого расположен атом А1, а в вершинах – атомы кислорода и группы ОН. Эти структурные единицы образуют соответственно тетраэдрические и октаэдрические двумерные сетки. Ввиду близости размеров граней тетраэдрической и октаэдрической сеток они могут сочленяться друг с другом через ионы кислорода и образовывать слои из двух, трех,

четырех и больше сеток (пакеты), составляющие основу глинистого минерала. В зависимости от количественного соотношения тетраэдрических и октаэдрических слоев в пакете, глинистые минералы обозначают как 1:1,2:1,2:2 и т.п.

Вследствие взаимодействия Ван дер Ваальса между структурными слоями (силикатными пластинами) возникают промежутки (галереи).

Ввиду различной длины ребер октаэдров и тетраэдров в слоях силиката возникают внутренние напряжения, что ограничивает размеры слоев в плоскости ab. Особый интерес для получения нанокомпозитов представляют минералы, способные к разбуханию (смектиты) [6, 25, 26]. Один из представителей смектитов – монтмориллонит, характерной особенностью которого является способность набухать в некоторых растворителях и диспергироваться на отдельные нанослои при определенной обработке.

Рис. 1. Схематическое изображение структуры 2:1 глинистых минералов [6, 27, 28].

Состав минерала может быть представлен химической формулой (т.н. одна формульная единица):

где: М – катион щелочных или щелочноземельных металлов, х – степень изоморфного замещения, х=0,5-1,3 [25, 29].

Изоморфное замещение внутри слоев (когда, например, Аl замещается на ионы меньшей валентности Mg или на Fe а Mg замещается на Li) приводит к тому, что элементарные слои приобретают отрицательный заряд (от 0.26 до 0.67 заряда электрона в расчете на одну формульную единицу). В промежутке между пластинками монтмориллонита

располагаются катионы металлов (Na, Li, Са и др.), уравновешивающие этот заряд. Малая часть заряд – компенсирующих катионов расположена на внешних поверхностях кристаллита. В зависимости от типа обменного катиона в природе встречается Na-монтмориллонит, Са- монтмориллонит, Li-монтмориллонит и т.п. Катионы металлов, находящиеся в природном минерале, могут заменяться на другие ионы при проведении реакции ионного обмена. По способности к замещению они могут быть расположены в следующий ряд [29-31]:

А1> Са>К> [(CH)N]> [(CH)N]> [(СН)N]>NH>Na> Li

Как отсюда следует, четвертичные алкиламмониевые катионы могут вытеснять ионы Na с обменных позиций в монтмориллоните, причем увеличение числа углеродных атомов в неполярных алифатических группах способствует более эффективному вытеснению межслоевых катионов [31]. В связи с этим, чаще всего в качестве модификаторов поверхностных свойств глины используют катионные поверхностно- активные вещества (ПАВ), в которых число углеродных атомов составляет от 6 до 20.

Все глинистые минералы обладают определенной емкостью катионного обмена (ЕКО). Эта величина обозначает количество обменных катионов (выраженное в мг-эквивалентах), способных к замещению на катионы другого типа в расчете на 100 г глины. Монтмориллонит обладает самой высокой среди глинистых минералов емкостью катионного обмена (до 150мг.экв/100г).

Способность катионов металлов в межслоевых пространствах замещаться на катионные ПАВ позволяет модифицировать поверхностные свойства силикатных пластин [22]. Для придания гидрофильным глинам органофильности используют ПАВ с длинными алифатическими цепями. Модифицированная в результате хемосорбции глина (или органоглина) являясь органофильной, имеет меньшую поверхностную энергию и лучше совмещается с органическими полимерами. Когда межплоскостные катионы после ионного обмена замещены более объемными алкиламмониевыми органическими катионами, происходит также и увеличение межслоевого расстояния.

Процессы сорбции органических катионов на глинистых минералах, в том числе на монтмориллоните изучаются уже сравнительно давно [32]. Поскольку в слое силиката присутствует отрицательный заряд, катионная концевая группа алкиламмониевого катиона предпочтительней располагается

на поверхности слоя, оставляя алифатическую цепь направленной от или вдоль поверхности. Как отмечено в работе [33], обмен ионов сложных органических соединений во многом отличается от обычного обмена ионов металлов, так как наряду с электростатическим взаимодействием поверхности минерала и иона, проявляется действие ван-дер-ваальсовых сил. В этой же работе указывается и на возможность образования слоев органических катионов внутри межпакетных пространств монтмориллонита. Они могут располагаться более чем одним слоем, так как одного слоя объёмных катионов может быть недостаточно для нейтрализации заряда на поверхности пластин. В результате сорбции объемных органических катионов и десорбции малых ионов натрия, происходит увеличение межплоскостного расстояния между пластинами глины [34, 35].

Межплоскостное расстояние в органоглинах также зависит от ЕКО слоистого силиката. Количество обменных позиций на поверхности силикатных пластин определяет плотность упаковки молекул модификатора.

Как видно из рисунка 2, межпакетное расстояние монтмориллонита увеличивается ступенчато в зависимости от количества атомов углерода в цепи модификатора первичного амина. Для глин, имеющих различное количество обменных позиций, увеличение межпакетного расстояния при эквивалентной сорбции алифатических аминов с длиной цепи от 1 до 3 метильных групп происходит на величину

0,4 нм. (см. рис. 2). Это межплоскостное расстояние примерно равно диаметру алифатических цепей, которые располагаются параллельно пластинам слоистого силиката (рис.3,а). При дальнейшем увеличении количества метильных групп в алифатических цепях вновь происходит возрастание величины

Рис. 2. Изменение межпакетного расстояния монтмориллонита, модифицированного первичным амином, в зависимости от числа углеродных атомов в цепи амина и от ЕКО: 1-малые ЕКО( 90 мг*экв/100г) [34].

межпакетного расстояния на

0,4 нм при длине углеродной цепи 8-10 атомов для силикатов с малым значением ЕКО и 16-18 для силикатов с большой ЕКО (>90мг*экв/100г). Это может соответствовать переходу алкильных цепей модификатора, находящихся в межслойном пространстве от монослоя к бислою, а затем к образованию псевдотройного слоя. На рисунке 3 показано изменении структуры слоев модификатора [34]. По-видимому, алифатические цепи таких модификаторов способны образовывать бислои, также лежащие параллельно поверхности частицы. Авторы работы [36] предполагают, что в случае большой катионной ёмкости, молекулы модификаторов могут образовывать моно- или бислои, которые располагаются в межплоскостном пространстве под определенным углом к поверхности слоистого силиката, т.н. “парафиновый” тип упаковки, а также образовывать гибридные образования, включающие как горизонтальные, так и “парафиновые” фрагменты.

Рис. 3. Агрегация алкильных цепей в слоистых силикатах: а) горизонтальный монослой; б) горизонтальный бислой; в) монослой “парафинового” типа; г) бислой “парафинового”типа [36].

Подробное изучение процессов сорбции различных четвертичных алкиламмониевых катионов на поверхности монтмориллонита было проведено в работах [32, 37]. В работе [36] был проведен анализ структуры слоев модификатора по сдвигу частот валентных асимметрических колебаний СН-группы. Оказалось, что внедренные цепи ПАВ существуют в состояниях, характеризующихся различной степенью упорядоченности. По мере уменьшения плотности упаковки молекул модификатора, уменьшения длины цепи или увеличения температуры внедренные цепи образуют всё более слабо упорядоченную структуру, следствием чего является увеличение соотношения гош/транс конформеров. При определенных значениях доступной поверхности в расчете на одну молекулу оказывается, что упаковка цепей не полностью разупорядочена, а сохраняет некоторый ориентационный порядок аналогично жидкокристаллическому (ЖК) нематическому состоянию (Рис. 4). Следует отметить, что при всей логичности сделанных авторами выводов достоверность экспериментальных данных невелика, так как сдвиги частот, по которым судили об изменении упорядочения молекул, близки к разрешению спектральных приборов.

Методом молекулярно-динамического моделирования было установлено, что по мере удлинения цепи структура прослойки изменяется пошагово от неупорядоченного к более упорядоченному монослою, затем скачкообразно переходя к более беспорядочному псевдодвойному

Рис. 4. Модели упаковки алкилъных цепей: (а) короткие аякильные цепи: отдельные молекулы, горизонтальный монослой, (б) цепи средней длины: плоскостная неупорядоченность и образование встречно-штыревой структуры с формированием «псевдобислоя», (в) длинная цепь: повышенный межслоевой порядок, жидкокристаллический тип среды [36].

Одной из причин перспективности применения глин в качестве наполнителя является потенциальная возможность перехода их частиц к наноразмерам не за счет механического дробления, а, в основном, посредством химической модификации их поверхности. Кроме этого, для обеспечения высоких физико-механических свойств нанокомпозитов полимер-глина необходима хорошая совместимость органического и неорганического компонентов, которые изначально термодинамически не совместимы. Для достижения обеих этих целей используется модификация

поверхности частиц глины посредством ПАВ. Применение ПАВ должно сформировать между частицами глины органофильные слои, которые снижают поверхностную энергию на границе раздела фаз, увеличивают расстояние между силикатными слоями и, тем самым, облегчают проникновение полимерных цепей в межплоскостные пространства глины. Подбор ПАВ требует знания особенностей структуры глинистых минералов

Ссылка на основную публикацию